4 research outputs found

    An Application of The PROMETHEE Method To Select The Best Response for Carbon Fibre Reinforced Plastic Drilling in Machining Operations

    Get PDF
    The manufacture of carbon fibre reinforced plastic (CFRP) composites from carbon fibres fused with epoxy matrix, deploying the hand layup method has raised considerable attention. Within this research domain, drilling with various tools such as coated and uncoated drills is of great significance. Unfortunately, the use of intuition and experience to select the best parameter in the drilling operation has been known to be less efficient, causing the inadequate distribution of drilling resources to actualize the effectiveness of drilling parameters. Energy wastages are also associated with the present practice of intuition in drilling process. In this study, a novel approach of PROMETHEE I and II are presented to avoid ineffectiveness in drilling resource distribution and select the best drilling operations parameters. The proposed method utilizes experimental data from the literature to verify the method's performance. This study helps in reducing waste due to the inadequate distribution of drilling operations sources. PROMETHEE analyses the drilling parameters of the CFRP composites using preference functions that map the differences among alternatives during machining judgments. Out of the six responses examined, the best response is exit delamination with a weight of 0.059, surface roughness with a weight of 0.031emerged as the second position, torque weighing 0.003 took the 3rd position while the last position is entry delamination, weighing -0.102

    Factor Selection in Drilling Unidirectional Carbon Fiber Reinforced Plastic Composite Plates with The HSS Drill Bit Using Analytic Hierarchy Process

    Get PDF
    The present state of competition within the plastic composite industry calls for efficiency to be competitive. However, in the drilling of carbon-fiber-reinforced plastic (CFRP) composites, the process engineer still lacks knowledge of the priority of parameters as parameters are chosen at random, and resources are deployed without justification on their importance and strength. Consequently, production crises and productivity losses persist. In this article, the analytic hierarchy process (AHP) method is deployed to evaluate the weights of criteria in a CFRP composite drilling operation. The establishment of the decision, alternatives, and criteria is accomplished, and pairwise comparisons are conducted to allow the computation of the importance weight of each criterion. The weight is then established. The proposed approach was illustrated with experimental data from the literature with a plastic drilling case. Six criteria were chosen as crucial in determining the drilling parameters of CFRP composites. The results reveal the following: thrust force (0.413), torque (0.253), eccentricity (0.151), surface roughness (0.115), delamination at entry (0.037) and delamination at exit (0.030). In a validation exercise to ascertain the consistency of the analysis, a consistent analysis was obtained. The novelty of the article is using the AHP approach on the drilling of CFRP composites. Practically, these results impact operator training, indicating that attention should be focused on thrust force control. The industrial applications of CFRP composites include the basic structures of automobiles, ships, and airplanes

    A Fuzzy Analytic Hierarchical Method to Reduce Imprecision and Uncertainty in Drilling Operation’s Factor Selection Process for Unidirectional Carbon Fibre Reinforced Plastic Composite Plates

    Get PDF
    Parametric selection in machining processes is recently understood as a route to reducing waste generation in drilling activities and achieving a robust resource distribution in drilling activities. However, the selection methods dominant in the literature lack competence in reducing uncertainties and imprecision associated with the drilling process. The purpose of this research is to reduce the uncertainty and imprecision in previously analyzed data that used the analytic hierarchy process (AHP) method. This paper adjusts the uncertainty and imprecision by introducing a geometric mean-based fuzzy analytic hierarchy process. The selection method influences the drilling expert's preferences by imposing the fuzzy theory in a triangular member function that converts the crisp numerical values into fuzzy members and adequately suppresses the imprecision and uncertainty in the elements. The thrust force was positioned first in ranking with a FAHP method's weight of 0.415, which matched the literature value of 0.413 for the AHP method. It was found that the use of the FAHP method has corrected the imprecision and uncertainty introduced by the AHP method. It was found that the thrust force and torque were overestimated by or 0.48% and 3.95%, respectively and was accordingly corrected. Besides, no errors were found with the measurement of eccentricity response. Furthermore, the entry delamination, exit delamination and surface roughness were underestimated by -8.11%, -3.33% and -6.96%, respectively, and therefore corrected by the FAHP method. The usefulness of this effort is to enhance cost-effective decisions and the effectiveness in the distribution of scarce drilling resources

    An Application of Data Envelopment Analysis in the Selection of the Best Response for the Drilling of Carbon Fiber-reinforced Plastic Composites

    Get PDF
    In the drilling operation, defects such as delamination at exit and entry are very disturbing responses that impact the efficiency of the drilling process. Without control, an exponential growth in the amount of drilled components with defect quantities may result. Thus, the process engineer has input in attaining the desired production levels for components in the drilling process. Consequently, this article deploys a novel method of data envelopment analysis to evaluate the relative efficiency of the drilling process in reducing the defects possible in the producing components from the CFRP composites. The high-speed steel drill bits were utilized to process the CFPs, while the responses considered are the entry and exit determination, thrust force, and torque, among others. Literature experimental data in twenty-seven experimental counts were summarized into fewer groups and processed through the data envelopment analysis method. The results show that capturing the CFRP composite responses is feasible, providing an opportunity for enhanced efficiency and a situation where undesirable defects in the CFRP composite production process may be eradicated. The article’s uniqueness and primary value are in being the foremost article in offering an updated vast representation of the comparative efficiency of CFRP composite parameters within the literature for the composite area. The work adds value to the CFRP composite literature by envisaging and understanding the comparative efficiency for the parameters, identifying and separating the best from the worst decision-making unit. It also reveals how the parameters are linked by their relative placements. The article's novelty is that using data envelopment to compare the efficiency in reducing drilling defects such as entry and exit determination, among others. The method’s utility is to provide information for cost-effective drilling operations during the planning and control phases of the operation
    corecore